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ABSTRACT
In an era punctuated by rapid digitalization, Network Intrusion De-
tection Systems (NIDS) stand sentinel against an ever-multiplying
array of cyber threats. Their predominant dependence on prede-
fined patterns, however, acts as a double-edged sword, enabling effi-
ciency against known threats while inadvertently leaving them ex-
posed to innovative, unknown cyber offensives. Confronted by nu-
anced adversarial attacks, the urgent need to bolster the adaptive ca-
pacity of NIDS becomes increasingly prominent. This report delves
into the transformative potential of Adversarial Machine Learn-
ing (AML), specifically Generative Adversarial Networks (GANs),
to metamorphose and reinforce the existing detection paradigms.
Insights drawn from the exhaustive CSE-CIC-IDS2017 dataset am-
plify our understanding, laying down foundational markers for this
explorative venture.
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1 INTRODUCTION
The landscape of cyber threats, akin to a chameleon, changes hue
with alarming speed. Traditional Network Intrusion Detection Sys-
tems (NIDS), revered as a formidable knight against a plethora of
cyber-attacks, have long depended on the identification of mali-
cious patterns to flag them for subsequent investigations. Although
they have been proven tremendously effective against established
threats, this very essence of recognition based on familiarity be-
comes its Achilles’ heel when confronting novel, inventive threats.
As attackers employ cunning tools and sophisticated methodolo-
gies, it becomes abundantly clear that the static nature of traditional
NIDS necessitates a radical rethink.

Traditional NIDS primarily rely on signature-based and anomaly-
based mechanisms, which, while effective for known threats, often
fall short in the face of zero-day attacks and sophisticated, evolving
cyber threats. This limitation stems from their kind of stagnant
nature, which relies heavily on pre-defined rules and known attack
patterns. As cyber threats become increasingly complex and elusive,
the need for a dynamic and adaptable approach to network security
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simultaneously grows. Considering this sobering reality, the emer-
gence of Adversarial Machine Learning (AML) and, particularly,
Generative Adversarial Networks (GANs), opens new horizons in
the realm of NIDS, offering the potential to revolutionize how cyber
threats are identified and mitigated.

Emerging from this vast array of challenges is the paradigm
of Adversarial Machine Learning (AML). AML intentionally in-
troduces perturbations in data, and these disturbed or adversarial
inputs are curated with an intent to deceive and befuddle machine
learning models, thereby exposing their vulnerabilities.

In this context, the concept of the External Classifier Gener-
ative Adversarial Network (ECGAN) becomes particularly rele-
vant. Inspired by Ayaan Haque’s pioneering work in "EC-GAN:
Low-Sample Classification using Semi-Supervised Algorithms and
GANs", we explore the potential of ECGAN in network intrusion
detection. Haque’s approach, which cleverly leverages GANs to
generate artificial data for enhancing classification tasks, especially
in low-sample, fully-supervised scenarios, lays a foundational basis
for my research.

2 RELATEDWORK
The fusion of machine learning and network security has brought
about a variety of monumental shifts. A systematic survey of aca-
demic literature unveils the multi-faceted approaches shaping the
discipline:

2.1 Advancements in GANs for Classification
Tasks

The innovative use of Generative Adversarial Networks (GANs) for
classification tasks, particularly in contexts where data is scarce,
marks a significant advancement in machine learning. A notable
contribution in this area is Ayaan Haque’s "EC-GAN: Low-Sample
Classification using Semi-SupervisedAlgorithms andGANs". Haque
introduces the concept of ECGAN, a novel GANmodel that employs
an external classifier to enhance classification in fully-supervised
tasks. This approach is especially pertinent in scenarios where un-
labeled data is as scarce as labeled data, a common challenge in
fields like medical imaging. My work draws inspiration from this
groundbreaking research, adapting the ECGAN framework for the
specific challenges of network intrusion detection.

2.2 GANs in Intrusion Detection Systems
Shahriar et al. (2020) in their paper "G-IDS: Generative Adversarial
Networks Assisted Intrusion Detection System," published in the
IEEE, emphasize the role of GANs in generating synthetic samples
for training Intrusion Detection Systems (IDS). This approach is
particularly effective in scenarios with imbalanced or missing data,
common in emerging Cyber-Physical Systems (CPS).
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2.3 Adversarial Attacks on ML Models in NIDS
In "A Sensitivity Analysis of Poisoning and Evasion Attacks in
Network Intrusion Detection System Machine Learning Models,"
Talty, Stockdale, and Bastian (2021) discuss the susceptibility of
ML models in NIDS to adversarial attacks. Their work, presented
at MILCOM 2021, highlights how attackers exploit ML models by
altering training data or evading detection, thereby undermining
the models’ effectiveness in detecting malicious activity.

2.4 Comprehensive Survey of GANs in
Cybersecurity

Dunmore et al. (2023), in their paper "A Comprehensive Survey of
Generative Adversarial Networks (GANs) in Cybersecurity Intru-
sion Detection," provide an extensive overview of GAN applications
in IDS. Published in IEEE Access, this study details how GANs are
utilized for creating adversarial examples, editing data, generating
polymorphic malware samples, and augmenting data for rare attack
classes.

These studies underscore the dynamic interplay between GANs
and machine learning in enhancing the capabilities of NIDS, ad-
dressing the challenges posed by sophisticated cyber attacks.

3 METHODOLOGY
3.1 Data Preprocessing
The methodology begins with meticulous data preprocessing to
ensure the robustness and accuracy of my ECGAN model. The
dataset of focus was the CSE-CIC-IDS2017 dataset, renowned for its
comprehensive coverage of network traffic patterns, including both
benign and malicious activities. The preprocessing steps involved
were as follows:

• Label Encoding: The categorical labels in the dataset were
transformed into a numerical format using a Label Encoder,
facilitating the processing by machine learning models.

• Train-Test Split: The dataset was split into training and
testing sets, ensuring a proportionate representation of each
class in both subsets.

• Standard Scaling: To normalize the feature scales, I applied
Standard Scaling, which centers the data around zero and
scales it according to standard deviation.

• Principal Component Analysis (PCA): Given some of the
disproportionate features of the dataset, PCA was employed
so as to achieve a dimensionality reduction, retaining the
most significant features while reducing the computational
complexity.

• Normalization: The final step involved normalizing the
data so as to ensure that the input features have equal weight
in the model’s training process.

Figure 1 presents a breakdown of the different types of data in
the CSE-CIC-IDS2017 dataset, highlighting the distribution and
ratio of each attack type, which underscores the necessity of the
strategic sampling approach.

3.2 Strategic Sampling
Recognizing the challenge of imbalanced data, particularly with
rare but critical attack types such as Heartbleed or Infiltration, I

Figure 1: Distribution of data types in the CSE-CIC-IDS2017
dataset.

adopted a strategic sampling approach. This involved oversampling
of underrepresented classes to ensure that the model is trained on a
comprehensive dataset, reflective of the diverse range of threats in
network security. The data distribution shown in Figure 1 further
illustrates the imbalance across different classes, justifying the need
for such a sampling strategy.

3.3 ECGAN Model Design and Rationale
3.3.1 Overview. The choice of ECGAN (External Classifier Gener-
ative Adversarial Network) for this project stems primarily from
its unique architectural advancements over traditional Generative
Adversarial Networks (GANs). While standard GANs mainly just
consist of a generator and a discriminator, the concept of an ECGAN
introduces an additional component as suggested by the name, an
external classifier. This enhancement significantly aids the model’s
ability to specialize in classification tasks, which is particularly
beneficial for complex network intrusion detection scenarios.

The ECGANmodel sets itself apart from traditional GANs through
its unique approach to network intrusion detection. Unlike conven-
tional models that often blend the roles of classification and data
authenticity verification, ECGAN separates these functions. The
external classifier maintains a sole focus on actually classifying
network traffic, analyzing both real and synthetically generated
samples, while the generator and critic components work in tan-
dem to produce realistic synthetic data. This separation allows for
a more targeted and nuanced approach to identifying network in-
trusions. By specializing in classification tasks, ECGAN offers a
novel solution in the detection of a broader range of cyber threats,
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including those that are new and less defined, thus addressing a
critical gap in traditional NIDS capabilities.

3.4 Component Design
The ECGAN model consists of three primary components: the
Generator, the Critic, and the Classifier. Each of these components
plays a vital role in the functionality and efficiency of the model.
Figure 2 provides a visual representation of the interaction between
these components.

Figure 2: Schematic representation of the ECGAN model, il-
lustrating the interaction between the Generator, Critic, and
Classifier. Adapted from: "EC-GAN: Low-Sample Classifica-
tion using Semi-Supervised Algorithms and GANs" by Ayaan
Haque, 2021.

• Generator: The generator is designed to create synthetic
data that mirrors real network traffic. It learns from the
latent space to generate data points that the critic cannot
easily distinguish from real data. The architecture of the
generator includes multiple dense layers with nonlinear acti-
vation functions, allowing it to capture the complex patterns
inherent in network traffic.

• Critic: The critic’s role is to differentiate between real and
synthetic data. It is constructed with a series of dense layers,
each followed by non-linear activation functions. The critic’s
feedback to the generator is crucial in refining the synthetic
data generation process.

• Classifier: The classifier, a unique component of ECGAN,
is tasked with the classification of network traffic, both real
and synthetic. Its architecture is optimized for high accuracy
in intrusion detection, with layers specifically designed to
capture the subtle nuances of network threats.

This structure, as depicted in Figure 2, ensures a synergistic
workflow where each component complements and enhances the
capabilities of the others, contributing to the overall efficacy of the
ECGAN model.

3.5 Rationale for ECGAN in Network Intrusion
Detection

The rationale behind choosing ECGAN for network intrusion de-
tection is rooted in the unique challenges posed by this domain.

Network security data is inherently complex and requires a sophis-
ticated approach for effective threat identification. The ECGAN
model’s external classifier provides the necessary specialization for
accurately identifying network intrusions, a task that traditional
GANs may not efficiently accomplish.

3.6 Training Process
The training process involved iterative improvements of eachmodel
component:

(1) Training the Critic: There was alternation between train-
ing the critic on real and synthetic data, allowing it to effec-
tively learn the characteristics of both.

(2) Training the Generator: The generator was then trained
using the feedback from the critic, enhancing its ability to
produce increasingly realistic network traffic data. This in-
teraction between the two is the most vital part of most
GANs.

(3) Training the Classifier: The classifier was trained on both
real and synthetic data, ensuring it can accurately detect
intrusions under various scenarios.

3.7 Implementation Details
My implementation of the ECGAN model involved several key
considerations:

• Training Approach: The training process was designed to
iteratively improve each component of the ECGAN model.
In regards to the technical components of the actual im-
plementation, the model utilized a combination of binary
crossentropy for the critic and generator, and categorical
crossentropy for the classifier, optimizing the model towards
generating realistic data and accurately classifying network
traffic.

• RandomWeighted Average Layer: A novel addition to the
model is the RandomWeighted Average layer, which creates
intermediate samples by blending real and generated data.
This mechanism enhances the critic’s ability to provide more
granular feedback, further refining the generator’s output.

• Logging and Analysis: Throughout the training process,
the performance metrics of each component were meticu-
lously logged. This data was instrumental in fine-tuning the
model and provided some incredibly valuable insights into
the learning dynamics of the ECGAN.

• Software andHardware Environment: Themodel was de-
veloped and trained using TensorFlow and Keras in Python,
on a standardMac computer. Despite the lack of high-performance
computing hardware, the efficient design of the ECGAN al-
lowed us to achieve significant results.

Loss functions such as binary crossentropy and categorical crossen-
tropy were employed to measure the performance of the generator,
critic, and classifier respectively. The detailed logs of each training
epoch provided valuable insights for model refinement.

3.8 RandomWeighted Average Layer
A unique addition to the ECGAN model is the Random Weighted
Average layer. This layer facilitates the generation of intermediate
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samples between real and synthetic data, contributing to the critic’s
ability to provide nuanced feedback to the generator.

3.9 Challenges and Solutions
Throughout the development and training process, there were a
multitude of challenges to be faced:

• BalancingComponents: Ensuring that the generator, critic,
and classifier are balanced in their learning was crucial. Im-
balances could lead to the overfitting of one component at
the expense of others.

• DataRepresentation: Given the complex nature of network
traffic data, representing this data effectively in the model
was critical. I addressed this through careful feature selection
and preprocessing.

• Computational Constraints: Working within the compu-
tational constraints of a standard Mac computer, I optimized
the model to be efficient yet effective, ensuring that it could
be trained and evaluated without the need for high-end com-
puting resources.

3.10 Model Evaluation
Post-training, the ECGAN model was rigorously evaluated using
various metrics to assess its performance in detecting network
intrusions. The evaluation focused on the model’s precision, recall,
and ability to generalize to unseen data, ensuring its effectiveness
in real-world scenarios.

To summarize, the development and training of the ECGAN
model represent a significant stride in the application of adversarial
machine learning to network security. The careful architectural
choices in conjunction with a strategic training approach have
culminated in a model that is not only innovative but also practical
for enhancing network intrusion detection systems.

4 EXPERIMENTAL SETUP
This section goes in depth on the computational setup and the
data handling strategies employed in research. These elements are
crucial for replicability and understanding the context in which the
ECGAN model was developed and tested.

4.1 Computational Environment and Tools
My research was conducted on a standard computing setup, uti-
lizing a Mac computer. Despite the absence of specialized high-
performance hardware, I was able to efficiently train and test the
ECGAN model by leveraging the following software and libraries:

• Programming Language: Python was used as the primary
programming language due to its extensive support for data
science and machine learning operations.

• Deep Learning Framework: TensorFlow, along with its
high-level API Keras, served as the main framework for
developing and training the ECGAN model. Their versatility
and ease of use made them ideal for research purposes.

• Data Processing: For data manipulation and preprocessing,
Pandas and NumPy were used. These libraries provided the

necessary tools for handling large datasets, performing op-
erations such as filtering, aggregation, and transformation
with ease.

• Dimensionality Reduction and Normalization: Scikit-
learn was utilized for applying Principal Component Analy-
sis (PCA) and normalization techniques. This library’s effi-
cient implementation of machine learning algorithms was
crucial in processing the dataset effectively.

Despite the constraints posed by the absence of a dedicated
high-performance computing system, my setup proved sufficient
for the scope and requirements of the necessary research. The
combination of Python and its associated libraries enabled us to
develop a robust ECGAN model and achieve meaningful insights
into network intrusion detection.

5 RESULTS AND INITIAL FINDINGS
5.1 Performance Metrics
The ECGAN model was rigorously evaluated to assess its effective-
ness in detecting various types of network intrusions. The perfor-
mance metrics, including Precision, Recall, and F1-score for each
attack type, are presented in Figure 3. These metrics provide insight
into the model’s ability to accurately identify and classify different
types of network attacks.

Figure 3: ECGAN Model Performance Metrics.
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5.2 Comparative Analysis with Traditional
NIDS

The ECGAN model’s performance was benchmarked against tra-
ditional NIDS to gauge its effectiveness. While the model demon-
strates promising results in certain aspects, it’s important to ac-
knowledge areas where traditional NIDS still outperforms, as shown
in Figure 4. For instance, in certain attack types like PortScan and
Web Attack XSS, the traditional systems show higher precision and
recall.

This variation in performance can be attributed to the inherent
differences in approach. Traditional NIDS are highly effective in
detecting known attack patterns through predefined rules, which
can lead to higher precision in familiar attack scenarios. In contrast,
the ECGAN model, with its learning-based approach, offers greater
adaptability and potential in identifying novel threats, albeit with
some trade-offs in accuracy for certain attack types.

Figure 4: Performance Metrics of Traditional NIDS
Benchmark. Adapted from: "An Intrusion Detection
System for Multi-class Classification Based on Deep
Neural Networks" by Petros Toupas, 2019 IEEE ICMLA.
DOI:10.1109/ICMLA.2019.00206

6 AREAS FOR IMPROVEMENT AND FUTURE
WORK

6.1 Addressing Performance Gaps
The comparative analysis reveals performance gaps in the ECGAN
model, particularly in its ability to match the precision and recall
rates of traditional systems for certain attack types. These gaps

underscore the need for further refinement in the model’s learning
algorithms and data processing techniques. Enhancing the feature
extraction process and incorporating more robust data augmenta-
tion strategies could potentially improve the model’s accuracy.

6.2 Balancing Novelty and Accuracy
One of the challenges in developing advanced NIDS like ECGAN lies
in balancing the detection of novel threats with maintaining high
accuracy for known attack types. Future iterations of the model
could focus on optimizing this balance, possibly through hybrid
approaches that integrate the strengths of rule-based systems with
machine learning algorithms.

6.3 Scalability and Real-World Application
Another area for improvement is the scalability of the model. The
current implementation, tested in a controlled environment, may
face challenges when deployed in real-world, large-scale networks.
Addressing these challenges will require extensive testing under
varied network conditions and possibly integrating the model with
existing cybersecurity infrastructure.

6.4 Continued Learning and Adaptation
Given the ever-evolving nature of cyber threats, it is imperative
that the ECGAN model continues to learn and adapt. Incorporating
mechanisms for continuous learning and regular updates based on
emerging threat patterns will be crucial for maintaining the model’s
relevance and effectiveness.

6.5 Addressing Computational Limitations
Lastly, the computational limitations encountered during the de-
velopment and testing phases highlight the need for more robust
computational resources. Future work could explore optimizing
the model for efficiency, enabling it to operate effectively even in
resource-constrained environments.

In conclusion, while the ECGAN model marks a significant step
forward in the realm of NIDS, these areas of improvement pave the
way for ongoing research and development. The insights gained
from this project lay the groundwork for future advancements in
the field of cybersecurity.

7 CONCLUSION AND FUTURE DIRECTIONS
7.1 Key Contributions
This research represents a significant stride in the development
of Network Intrusion Detection Systems (NIDS) through the inte-
gration of Adversarial Machine Learning (AML) and Generative
Adversarial Networks (GANs). The proposed External Classifier
Generative Adversarial Network (ECGAN) model demonstrates
a novel approach to handling the complexities and nuances of
network security data. By implementing an external classifier in
conjunction with a generative adversarial framework, the model
exhibits improved adaptability and potential for detecting a wide
array of network threats, including novel and sophisticated cyber-
attacks.
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7.2 Challenges and Limitations
Despite promising outcomes, my research acknowledges several
limitations and challenges. A key observation is that while ECGAN
shows potential in recognizing new types of threats, it sometimes
lags in precision and recall compared to traditional NIDS, partic-
ularly for specific attack types. This discrepancy highlights the
inherent challenge in striking a balance between the adaptability to
new threats and the precision in detecting known attack patterns.

7.3 Areas for Improvement
The road ahead involves addressing these performance gaps. En-
hancing the model’s learning algorithms, fine-tuning feature ex-
traction, and exploring more effective data augmentation methods
could improve overall accuracy. Balancing the detection of novel
threats with high accuracy in known attack scenarios remains a
critical objective for future iterations of the model.

7.4 Future Work
Looking ahead, several avenues for further research emerge:

Real-time Detection Capabilities: Integrating the ECGAN
model into live network environments to assess its real-world effi-
cacy and adaptability to real-time data streams.

Customization for Various Network Environments: Tailor-
ing the model to accommodate diverse network architectures, each
with unique traffic patterns and security requirements.

Zero-day Attack Adaptation: Enhancing the model’s capabil-
ity to identify and respond to zero-day attacks, which represent a
significant and ever-evolving threat landscape.

Scalability and Efficiency: Improving the model’s scalability
and computational efficiency to ensure its applicability in diverse
and resource-constrained environments.

Continuous Learning Mechanisms: Implementing continu-
ous learning frameworks to keep the model updated with emerging
cyber threat patterns and methodologies.

7.5 Concluding Thoughts
This work lays down a foundational marker in the exploration of
AML and GANs in network security, offering a new perspective
in a field traditionally dominated by static, rule-based systems.
While the ECGAN model showcases significant potential, it also
opens up a dialogue for continuous innovation and improvement
in the cybersecurity domain. As cyber threats evolve, so must our
approaches to detecting and mitigating them. This research is a
testament to the potential of integrating advanced AI techniques
in revolutionizing NIDS, paving the way for a future where these
systems are not only reactive but also proactive and adaptive to the
ever-changing landscape of cyber threats.
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